Class VIII Session 2025-26 Subject - Mathematics Sample Question Paper - 3

Time Allowed: 3 hours Maximum Marks: 80

Section A

1. Find
$$\frac{3}{7} + \left(-\frac{6}{11}\right) + \left(-\frac{8}{21}\right) + \frac{5}{22}$$

[1]

a)
$$\frac{-125}{462}$$

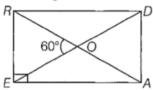
b) 125

d) -125

2. The value of x for which the expressions 3x - 4 and 2x + 1 become equal is

[1]

a) 1


b) -3

c) 0

d) 5

3. In rectangle READ, the values of \angle EAR, \angle RAD and \angle ROD are respectively

[1]

a) 40°, 60°, 110°

b) 30°, 40°, 110°

c) 30°, 60°, 120°

d) 30°, 40°, 120°

4. The probability of getting not more than 7 in rolling of a dice is

[1]

a)
$$\frac{1}{4}$$

b) $\frac{1}{7}$

c)
$$\frac{1}{2}$$

d) 1

5. By which smallest natural number should 128 be divided so that the quotient is a perfect cube?

[1]

a) 2

b) 3

c) 6

d) 4

6. A TV set was bought for ₹26250 including 5% VAT. The original price of the TV set is

[1]

a) ₹27562.50

b) ₹26245

c) ₹28000

d) ₹25000

7. The sum of -7pq and 2pq is:

[1]

a) 5 pq

b) -5 pq

c) 9 pq

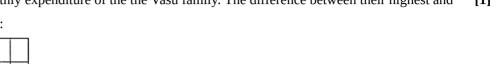
d) - 9 pq

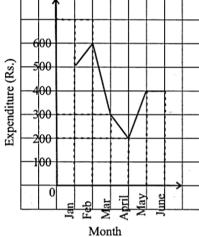
3. Simplify: $\left[\left\{\left(\frac{-1}{5}\right)^{-2}\right\}^2\right]^{-1}$

[1]

a) $\frac{5}{625}$

c) $\frac{1}{652}$


- 9. A train can finish a journey in 10 hours, travelling at a speed of 56 km/h. If another faster train is to cover the same journey in 8 hours, what would be the average speed of the new train?
- [1]


a) 60 km/h

b) 80 km/h

c) 50 km/h

- d) 70 km/h
- 10. The line graph shows the monthly expenditure of the Vasu family. The difference between their highest and [1] lowest monthly expenditure is:

a) ₹ 300

b) ₹ 400

c) ₹ 100

d) ₹ 200

Section B

11. Fill in the blanks:

(e)

(i)

[10]

(a) Product of two rational numbers is a _____ [1]

If $\frac{2}{5}x - 2 = 5 - \frac{3}{5}x$, then x =_____. (b)

[1]

The name of three-sided regular polygon is ____ (c)

- [1]
- (d) An experiment whose outcomes cannot be predicted exactly in advance is called a ___
- [1]

experiment.

[1]

(f) Amount (A) = Principal + ___ [1]

0.000003 is equal to _____ $\times 10^{-6}$. (g)

[1]

If xy = 10, then x and y vary _____ with each other. (h)

[1]

The number of terms in the expression xyz + 1 is _____.

[1]

(j) The graph of a linear equation is always a _____ line.

[1]

Section C

The unit's digit of the square of a number having digit at unit's place as 4 or 6 is ______.

Tell which property allows you to compare $\frac{2}{3} \times \left[\frac{3}{4} \times \frac{5}{7}\right]$ and $\left[\frac{2}{3} \times \frac{5}{7}\right] \times \frac{3}{4}$ 12.

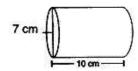
[2]

13. The number 1057 is obviously not perfect square. Give reason.

[2]

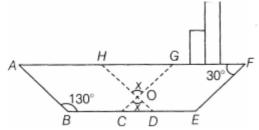
[2]

14. Is 46656 a perfect cube? 15. Subtract 4a - 7ab + 3b + 12 from 12a - 9ab + 5b - 3.


[2]

16. Find the volume of the following cylinder: [2]

- Find the common factors of the given term: $3x^2y^3$, $10x^3y^2$, $6x^2y^2z$ 17.


[2]

[3]

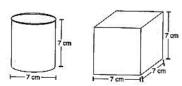
[4]

[4]

- Solve: $\frac{1}{2}(x+1) + \frac{1}{3}(x-1) = \frac{5}{12}(x-2)$ 18. [3]
- 19. In the following figure of a ship, ABDH and CEFG are two parallelograms. Find the value of x. [3]

- 20. 2025 plants are to be planted in a garden in such a way that each row contains as many plants as the number of [3] rows. Find the number of rows and the number of plants in each row.
- A man gives 40% of his money to his children and 20% of the remaining to a trust. If he is still left with ₹ 9600, 21. [3] what is the amount did he originally have?
- What must be added to $2m^2 3mn + 3n^2$ to get $5m^2 + 2mn + 7n^2$? [3] 22.
- Find the total surface area of a cuboid with dimensions 8 cm by 6 cm by 5 cm. 23.
- Compare the numbers 2.7×10^{12} and 1.5×10^{8} 24. [3]
- 25. Two persons could fit new windows in a house in 3 days. How many persons would be needed to fit the [3] windows in one day?
- 26. In a district, the number of branches of different banks is given below:

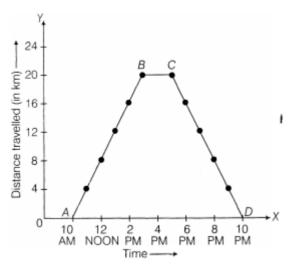
Bank	State Bank of India	Bank of Baroda	Punjab National Bank	Canara Bank
Number of branches	30	17	15	10


Draw a pie chart for this data.

27. Arunima bought household items whose marked price and discount % is as follows

Item	Quantity	Rate (in ₹)	Discount%
(i) Atta	1 packet	200	16%
(ii) Detergent	1 packet	371	22.10%
(ii) Namkeen	1 packet	153	18.30%

Find the total amount of the bill she has to pay.


- [4] The adjacent sides of a rectangle are $x^2 - 4xy + 7y^2$ and $x^3 - 5xy^2$. Find the area. 28.
- 29. Describe how the two figures at the right are alike and how they are different. Which box has larger lateral [4] surface area?

- Factorize $x^4 y^4$ [4] 30.
- 31. Study the graph given below of a person who started from his home and returned at the end of the day. Answer [4] the questions that follow.

- a. At what time did the person start from his home?
- b. How much distance did he travel in the first four hours of his journey?
- c. What was he doing from 3 PM to 5 PM?
- d. What was the total distance travelled by him throughout the day?
- e. Calculate the distance covered by him in the first 8 hours of his journey.
- f. At what time did he cover 16 km of his journey?
- g. Calculate the average speed of the man from A to B and B to C.
- h. At what time did he return home?

Solution

Section A

1. **(a)** $\frac{-125}{462}$

Explanation:

$$\begin{aligned} &\frac{3}{7} + \left(-\frac{6}{11}\right) + \left(-\frac{8}{21}\right) + \frac{5}{22} \\ &= \left[\left(\frac{3}{7}\right) + \left(-\frac{8}{21}\right)\right] + \left[\left(-\frac{6}{11}\right) + \frac{5}{22}\right] \\ &= \left[\frac{3 \times 3 - 1 \times 8}{21}\right] + \left[\frac{-6 \times 2 + 1 \times 5}{22}\right] \\ &= \left[\frac{9 - 8}{21}\right] + \left[\frac{-12 + 5}{22}\right] \\ &= \left[\frac{9 - 8}{21}\right] + \left[\frac{-12 + 5}{22}\right] \\ &= \left[\frac{1 \times 22 - 7 \times 21}{462}\right] \\ &= \left[\frac{22 - 147}{462}\right] \\ &= \frac{-125}{462} \end{aligned}$$

2.

(d) 5

Explanation:

When the value of x is 5 then both the expressions will be equal.

Proof

$$3x - 4 = 2x + 1$$

$$x = 5$$

3.

(c) 30° , 60° , 120°

Explanation:

Given, a rectangle READ, in which

$$\angle$$
ROE = 60°

$$\therefore \angle EOA = 180^{\circ} - 60^{\circ} = 120^{\circ} [linear pair]$$

Now, in
$$\triangle EOA$$
, $\angle OEA = \angle OAE = 30^{\circ}$

[: OE = OA and equal sides make equal angles]

$$\therefore$$
 \angle EAR = 30°, \angle RAD = 90° - \angle EAR = 60°

and
$$\angle ROD = \angle EOA = 120^{\circ}$$

4.

(d) 1

Explanation:

1

5. **(a)** 2

Explanation:

$$128 = 2 \times 2$$


one 2 is left out and could not make a triplet, so 2 is the smallest natural number by which 128 should be divided so that the quotient is a perfect cube.

6.

(d) ₹25000

Explanation:

The cost price of TV set = ₹26250.

VAT including = 5%

... Original price =
$$26250 imes \frac{100}{105}$$

= ₹ 25000

Hence, ₹25000 is correct.

7.

(b) -5 pq

Explanation:

Given, monomials are -7pq and 2pq.

:.Their sum = -7pq + 2pq = (-7 + 2) pq [both monomials consist of like terms, so adding their numerical coefficient] = -5 pq

8.

(b) $\frac{1}{625}$

Explanation:

Given expression can be written as

Given expression can be written as
$$\left[\left(\frac{-1}{5} \right)^{-2} \right]^{2 \times (-1)} \left[\text{using } (\mathbf{x}^{\mathbf{m}})^{\mathbf{n}} = \mathbf{x}^{\mathbf{m} \times \mathbf{n}} \right]$$

$$\Rightarrow \left[\left(\frac{-1}{5} \right)^{-2} \right]^{-2} = \left(\frac{-1}{5} \right)^{(-2) \times (-2)}$$

$$= \left(\frac{-1}{5} \right)^{4}$$

$$= \frac{(-1)^{4}}{(5)^{4}} \left[\text{using } \left(\frac{a}{b} \right)^{n} = \frac{a^{n}}{b^{n}} \right] = \frac{1}{625}$$

9.

(d) 70 km/h

Explanation:

Speed and time are inversely related so with a decrease in time duration the speed has to increase to complete the journey.

In inverse proportion, the value of constant is given by $x \times y$

 $10 \times 56 = 8 \times a$ (where a is the average speed of the train)

$$\frac{560}{8} = a$$

70 km / hr = a

10.

(b) ₹ 400

Explanation:

Month with highest expenditure= February

Month with lowest expenditure = April

Difference in expenditure = 600 - 200 = 400

Section B

11. Fill in the blanks:

- (i) 1. Rational number
- (ii) 1.7
- (iii) 1. triangle
- (iv) 1. Random
- (v) 1.6
- (vi) 1. Interest
- (vii) 1.3
- (viii)1. Inversely

- (ix) 1.2
- (x) 1. Straight

Section C

12. $\frac{2}{3} \times \left[\frac{3}{4} \times \frac{5}{7}\right] = \frac{2}{3} \times \left(\frac{5}{7} \times \frac{3}{4}\right)$ [by commutative property over multiplication] $=\left(\frac{2}{3}\times\frac{5}{7}\right)\times\frac{3}{4}$ [by associative property over multiplication]

Hence, $\frac{2}{3} \times \left(\frac{3}{4} \times \frac{5}{7}\right)$ can be compared with $\left(\frac{2}{3} \times \frac{5}{7}\right) \times \frac{3}{4}$ with the help of associative and commutative property.

- 13. 1057. The number 1057 is not a perfect square because it ends with 7 whereas the square numbers end with 0, 1, 4, 5, 6 or 9.
 - 46656 2 23328 2 11664 2 5832
 - 2916 1458
- 3 729 14. 3 243 3 81 27
 - 1

By prime factorisation,

$$=2^3\times2^3\times3^3\times3^3$$

 $= 36^3$ which is a perfect cube.

All the terms form triplets

Therefore, 46656 is a perfect cube.

$$12a - 9ab + 5b - 3$$

$$- 4a - 7ab + 3b + 12$$

$$- + - -$$

$$8a - 2ab + 2b - 15$$

16. d = 7 cm,
$$r = \frac{7}{2}cm$$
, h = 10 cm

Volume of the cylinder $=\pi r^2 h$

$$= \pi \left(\frac{7}{2}\right)^2 \times 10$$

$$= \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 10$$

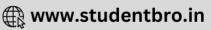
$$= 11 \times 7 \times 5$$

$$= 385 \text{ cm}^3$$

17. $3x^2y^3 = 3 \times x \times x \times y \times y \times y$

$$10x^3y^2 = 2 \times 5 \times x \times x \times x \times y \times y$$

$$6x^2y^2z = 2 \times 3 \times x \times x \times y \times y \times z$$


Hence the common factors are x, x, y, y

and
$$x \times x \times y \times y = x^2y^2$$

$$\Rightarrow \frac{x}{2} + \frac{1}{2} + \frac{x}{3} - \frac{1}{3} = \frac{5x}{12} - \frac{5}{6}$$

- 18. Given, $\frac{1}{2}(x+1) + \frac{1}{3}(x-1) = \frac{5}{12}(x-2)$ $\Rightarrow \frac{x}{2} + \frac{1}{2} + \frac{x}{3} \frac{1}{3} = \frac{5x}{12} \frac{5}{6}$ $\Rightarrow \frac{x}{2} + \frac{x}{3} \frac{5x}{12} = \frac{1}{3} \frac{1}{2} \frac{5}{6}$ [transposing $\frac{1}{2}$, $\frac{1}{3}$ to RHS and $\frac{5x}{12}$ to LHS] $\Rightarrow \frac{6x + 4x 5x}{12} = \frac{2 3 5}{6}$ $\Rightarrow \frac{5x}{12} = \frac{-6}{6}$

$$\Rightarrow$$
 $5x imes 6 = (-6) imes 12$ [by cross-multiplication]

$$\Rightarrow x = \frac{(-6) \times 12}{5 \times 6}$$

$$\therefore x = \frac{-12}{5}$$

19. We have, two parallelograms ABDH and CEFG.

Now, in ABDH,

$$\therefore$$
 \angle ABD = \angle AHD = 130° [\because opposite angles of a parallelogram are equal]

and
$$\angle$$
GHD = 180° - \angle AHD = 180° - 130° [linear pair]

$$\Rightarrow$$
 50° = \angle GHO

Also,
$$\angle$$
EFG + \angle FGC = 180° [: adjacent angles of a parallelogram are supplementary]

$$\Rightarrow$$
 30° + \angle FGC= 180° \Rightarrow \angle FGC = 180°- 30° = 150°

and
$$\angle$$
HGC + \angle FGC = 180° [linear pair]

$$\therefore$$
 \angle HGC = 180° - \angle FGC = 180° - 150° = 30° = \angle HGO

In
$$\Delta$$
HGO, by using angle sum property, \angle OHG + \angle HGO + \angle HOG = 180°

$$\Rightarrow$$
50° + 30° + x = 180° \Rightarrow x = 180° - 80° =100°

20. Let the number of rows be x.

Then number of plants in each row = x

 \therefore Number of plants in x rows = x \times x = x²

But 2025 plants are to be planted in a garden.

$$x^2 = 2025$$

$$\therefore x = \sqrt{2025}$$

The prime factorisation of 2025 is

\sim	. ~~	
	l 20	ヒンラ

2	67	
J	U/	

$$2025 = 3 \times 3 \times 3 \times 3 \times 5 \times 5$$

$$\therefore x = \sqrt{3 \times 3 \times 3 \times 3 \times 5 \times 5}$$

$$\therefore x = 3 \times 3 \times 5$$

$$\therefore x = 45$$

Hence, the number of rows is 45 and the number of plants in each row is 45.

21. Let the original amount of money with him = ₹ 100

Money given to children = 40% of original money

$$=\frac{40}{100}$$
 × 100 = ₹40

Remaining money = ₹ 100 - ₹ 40 = ₹ 60

Money given to trust = 20% of the remaining money

$$=\frac{20}{100} \times 60 = ₹12$$

When left over money is Rs. 48, original money = ₹ 100

If leftover money is Rs.9600, the original money $=\frac{9600\times100}{48}=$ 20,000 .

22. Let the number added is x,

$$(2m^2 - 3mn + 3n^2) + x = (5m^2 + 2mn + 7n^2)$$

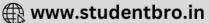
$$x = (5m^2 + 2mn + 7n^2) - (2m^2 - 3mn + 3n^2)$$

$$x = 5m^2 + 2mn + 7n^2 - 2m^2 + 3mn - 3n^2$$

$$x = 3m^2 + 5mn + 4n^2$$

So, the number is $3m^2 + 5mn + 4n^2$.

23. Here l = 8 cm, w = 6 cm, h = 5 cm


$$TSA = 2(lw + wh + hl)$$

$$= 2(8 \times 6 + 6 \times 5 + 5 \times 8)$$

$$= 2(48 + 30 + 40)$$

$$= 2(118) = 236$$

So, the total surface area is 236 cm^2

$$24.\,2.7 imes 10^{12} = 2.7 imes (10 imes 10^{11}) = (2.7 imes 10) imes 10^{11} = 27 imes 10^{11}$$

$$1.5 imes 10^8 = 1.5 imes (10 imes 10^7) = (1.5 imes 10) imes 10^7 = 15 imes 10^7$$

Now, 27 > 15 and

$$10^{11} > 10^7$$

Therefore, $27 \times 10^{11} > 15 \times 10^7$

Hence,
$$2.7 \times 10^{12} > 1.5 \times 10^8$$

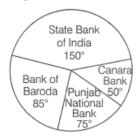
25. Let x persons be needed

We have the following table.

Number of days	3	1
Number of persons	2	x

Clearly, more the number of persons, faster would they do the job. So, the number of persons and number of days vary in inverse proportion.

So,
$$3 \times 2 = 1 \times x$$


$$\therefore x = 6$$

Thus, 6 persons would be needed.

26. Total number of branches = 30+17 + 15+10 = 72

Bank	Number of branches	Central angle
State Bank of India	30	$\left[rac{30}{72} imes360^\circ=150^\circ ight.$
Bank of Baroda	17	$rac{17}{72} imes360^\circ=85^\circ$
Punjab National Bank	15	$rac{15}{72} imes360^\circ=75^\circ$
Canara Bank	10	$rac{10}{72} imes360^\circ=50^\circ$

The pie chart is as follows:

27. From the given data in the table,

Rate of one packet of atta = ₹200

Discount % = 16%

So, price after discount = 200 - $\frac{16}{100} imes 200$

- = 200 32
- = ₹168

Rate of one packet of detergent = ₹371

Discount % = 22.10%

So, price after discount = 371 - 371 $\times \frac{22.10}{100}$

- = 371 81.991
- = ₹289.009

Rate of one packet of namkeen = 153

Discount% = 18.30%

So, price after discount = 153 - 153 $\times \frac{18.30}{100}$

- $= 153 1.53 \times 18.30$
- = 153 27.999
- = ₹125**.**001

- ∴ Total bill amount to be paid = ₹168 + ₹289.009 + ₹125.001
- = ₹582.01
- 28. Length = $x^2 4xy + 7y^2$ and Breadth = $x^3 5xy^2$

Area of rectangle = Length \times Breadth

$$= (x^2 - 4xy + 7y^2) \times (x^3 - 5xy^2)$$

$$= x^3 (x^2 - 4xy + 7y^2) - 5xy^2(x^2 - 4xy + 7y^2)$$

$$= x^5 - 4x^4y + 7x^3y^2 - 5x^3y^2 + 20x^2y^3 - 35xy^4$$

=
$$[x^5 - 4x^4y + 2x^3y^2 + 20x^2y^3 - 35xy^4]$$
 sq. unit

- 29. Similarity \rightarrow Both have same height.
 - Difference \rightarrow One is a cylinder, the other is a cube.

For the first figure

$$r = \frac{7}{2}cm$$

$$h = 7 cm$$

$$\therefore$$
 Lateral surface area $= 2\pi rh$

$$=2 imesrac{22}{7} imesrac{7}{2} imes 7$$

$$= 154 \text{ cm}^2$$

For second figure

$$l = 7 \text{ cm}$$

$$b = 7 \text{ cm}$$

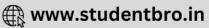
$$h = 7 cm$$

$$\therefore$$
 Lateral surface area = $4l^2$

$$= 4 \times (7)^2$$

$$= 196 \text{ cm}^2$$

Hence, the second box has the larger lateral surface area.


30.
$$x^4 - y^4 = (x^2)^2 - (y^2)^2$$

$$=(x^2-y^2)(x^2+y^2)$$
 Using $a^2-b^2=(a+b)(a-b)$

$$= (x - y)(x + y)(x^2 + y^2)$$
 Using $a^2 - b^2 = (a + b)(a - b)$

- 31. After observing the graph carefully, it is clear that
 - a. At 10 AM, the person starts from his home.
 - b. In the first 4 h (i.e. till 2 PM), he travelled 16 km.
 - c. The person was taking rest from 3 PM to 5 PM.
 - d. The total distance covered by the person throughout the day was 40 km, i.e. 20 km from A to B and then 20 km from C to D.
 - e. The distance covered by him in the first 8 h i.e. from 10 AM to 6 PM was 24 km.
 - f. He covered 16 km of his journey at 2 PM.
 - g. The total distance covered from A to B = 20 km and the time taken to travel from A to B = 5 h
 - ... The average speed of the man from A to B = $\frac{20}{5}$ = 4 km/h
 - and average speed from B to $C = \frac{0}{2} = 0$ km/h
 - h. He returned home at 10 PM.

